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Abs trac t  

We give a proof that for a large class of systems weakly coupled to heat baths the transi- 
tion probabilities per unit time obtained from the Markov approximation are equal to 
those that are calculated using the Fermi golden rule. 

1. In t roduc t ion  

There is a well-known formula in the quantum mechanics, the so-called 
Fermi golden rule (Messiah, 1962), which describes the probabifity of  transi- 
tion per unit time Pfi from the initial state Ii) to the final one If) :  

Pfi = 2rrl (.ft Vt i )  t 2 5(e i - el) (1.1) 

where the total Hamiltonian of  the system has the form 

H = Ho + V (1.2) 

and 

H o t i )  = e i l i ) ,  Itotf> = e f l f )  (1.3) 

The formula (1.1)is often successfully used for the study of  relaxation processes 
(Isihara, 1971). Its derivation based on the perturbation method, however, is 
unsatisfactory from the mathematical point of  view. 

A more rigorous derivation of  (1.1) is given by Fonda et al. (1975), where 
the quantum theory o f  measurements is applied. 

On the other hand, the latest rigorous studies (Davies, 1975, 1974, 1976) 
give us a method of  derivation o f  the Markovian master equations for physical 
systems weakly coupled to heat baths. In this paper we show that for a large 
class of  such systems the notion of  the transition probability per unit time 
from l i) to If)  has clear meaning and such probabilities are equal to those 
calculated using formula (1.1). 
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2. Physical System Weakly Coupled to a Heat Bath 

We consider a quantum physical system with free Hamiltonian H s that has 
pure point spectrum interacting with an infinite system whose Hamiltonian 
has a continuous spectrum. The total Hamiltonian has the form: 

H x =11 s +H R +XV (2.1) 

where the interaction term is 

XV= XS ® R (2.2) 

Here S and R are bounded and self-adjoint operators on the Hilbert spaces of  
the system and the bath, respectively. 

The rigorous derivation of  the Markovian master equations is based on the 
weak coupling limit method developed recently by Davies (1974, 1975, t 976). 
In that method we examine the convergence of the reduced dynamics in the 
interaction picture when X --* 0 and the rescaled time r = X2t is introduced: 

lim tr R [eiH°rlX~e-iIqkr/X=p @ aO eiHxr/x2 

x-'°x e -itt.r/x=] = A(r)p, Ho = Hs + HR (2.3) 

Here, P is an arbitrary state of  the system, o o is a fixed state of  the bath in- 
variant under the free evolution, and trR is a partial trace over the bath  
variables. 

The conditions for the existence o f  the limit dynamics are given in Davies' 
works (Davies, 1974, Theorems 2.1, 2.2, 2.3). A wide class of  models is con- 
sidered from this point o f  view and the limit dynamics derived (Davies, 1974; 
Davies and Eckmann, 1975; Alicki, 1977). 

If we assume that A(r)  exists, then we have the following equations o f  
motion (Davies, 1974, Theorem 2.1): 

do(r) _ KOp(r) (2.4) 
dr 

where 

and 

p0-) = A(r)p, p ~ D(~; °) (2.5) 
t 

K ° = lira 1 f A A t-+~ ~ e-iHSXKeiHSX dx' [21S = [Hs, "] (2.6) 

- - t  

oo 

Kp = f dt  {- t r  (RtRoo)StSp + tr (RtRoo)SpS ~ 
0 

+ tr (RRtoo)StPS - tr (RRtoo)pSSt} (2.7) 

S t = eiHStSe -iHSt, R t = eiHStRe -iHSt (2.8) 
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Making the simple calculations we obtain 

K°P=½ ~ D~([A~,pA +] + [Asp, A+]}+ ~ ihc~[A+~Ao~,p] (2.9) 
o~ o~ 

where 

and 

St = E Ac~e -i~°at, c% = en - e m  (2.10) 
OL 

{en} are the eigenvalues of Hs; 

De = [t(w~) - f eiW~th(t) dt 

h(t) = tr [RtRoo] 

(2.11) 

(2.12) 

(2.13) 

(2.14) ha = Im j h(t) eiWatdt 
0 

We have also the very useful property 

x°ut -- u~K ° (2.1 s)  

where 

Ut = e -idIst (2.16) 

The dynamical semigroups generated by (2.9) were studied in detail by 
Alicki (1976a) for the systems with the finite-dimensional Hilbert spaces and 
for the special case of N-levei atom interacting with the fermion heat bath by 
Davies (1974). 

3. Pauli Master Equations 

From the property (2.15) it follows that the time evolution given by the 
generator (2.9) leaves invariant the subset of all density matrices commuting 
with the Hamiltonian H s. We can choose an orthonormal base in the I-filbert 
space of  the system to obtain a classical Markov process for the diagonal 
density matrices. In contrast to Davies' (1974) and Aticld's (t976) work, we 
do not assume that Hs has nondegenerate eigenvalues. We prove in the Appendix 
the following theorem. 

Theorem 3.1. There exists an orthonormal base { In)) in the I-filbert 
space ~ s  such that 

Hsln ) = enln ) (3.1) 

and the set of diagonal density matrices 

1 
is invariant under the semigroup A0-). 
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Moreover, we obtain the classical Markov process of  the following form: 

dPn(r)_ 
a . r a p m ( r )  -- a . r a p . ( ~ )  

dr ra 
where 

(3.3) 

we obtain 

P~ra = X 21 (n I S I m) I e j d t e  i(em - en) t t r (ooRtR) 
- - o o  

= X21 (n ISIm)l  2 fi(e,n - en) (3.10) 

Introducing the rescaled time r = xzt we have new transition probabilities per 
unit time 

finrn =Pnm/ )k2 = anra (3.1 1) 

anm = I(n I S I m ) t  2 h(em - em) (3.4) 

The equation (3.3) is the so-called Panli master equation and the coefficients 
anm are the probabilities of  transition from the state I m ) to the state I n ) per 
unit time in the Markov approximation.  

Now we derive the same transition probabilities using the Fermi golden rule. 
We make formal calculations only, but it can be done in a mathematically 
rigorous way. 

Suppose that the initial state of  the composite system has the form 

I m )  ® t E , 7 )  (3.5) 

and the final one 

In)  ® [E ' ,7 ' )  (3.6) 

where {IE, 7 ) )  is an orthonormal and complete set of  eigenvectors for the 
Hamiltonian HR. Then using (1.1) we obtain the transition probabili ty 

era, E, u;n,E;~' = 27rX2 [ (m IS In )IZI(E,T IR I T' ,E')[  2 

x 8 (era + E - e ,  - E ' )  (3.7)  

We integrate over all final states tE',  7 ' )  of  the bath and we assume that its 
initial state is described by  the density matrix Oo, where (E, 7100 IE', 7 ' )  = 
%(E, ~)  x ~(E - ~ ' ) ~ , .  

Then we have 

Pnra = 2rrXzl( n [ S I m ) l  2 f d E d T f d E ' d T ' o o ( E ,  7) 

x (E ,  7 1 R I E ' , 7 ' ) ( E ' , 7 ' I R I E ,  7)6(em + E - e n - E ' )  (3.8) 

Using the following representation of  6(x) 

1 f e itx dt  5 ( x )  = (3 69~ 
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This result can be extended to certain cases where the interaction Hamilton- 
ians have more complicated forms and the operators involved are unbounded. 

Let 

where 

Appendix." P r o o f  o f  Theorem 3.1. 

We consider the master equation 

dp= { E De~([A~,P A+] + [A¢~p,A+]) 
d r  

(A.1) 

A~ Z = AnkEnk  (A.2) 
n , ] ¢  

Enk = In)  ( k l  (A.3) 

and {in )} is an arbitrary base of  eigenvectors of  Hs. W have also p(r)  = 
2r, s &s(r)k~s. Introducing the probability distribution (P]}; 

p/= tr [EHp(r)] (1.4) 

we obtain, using (1.1),  

~ --Cg Od 
d p j _  DaA)rA)sPrs - ~ E c~ -c, _ Dc~A~]AksPjs { E DaAgrAx]P~-C~ (A.5) 
dT" a,r,s %k,s  a,k,r 

For every ], a we have a matrix 

J f ~ ' ]  = [A~,4~sl (A.6) 

The matrix elements o f S  a']  are different from 0 if er = es and er - ei = 
e s - e] = co~ [see (2.10)]. Now we can introduce the new base {In ' ) '}  of  
eigenvectors which diagonalizes the matrices X a'l. Then we obtain 

d p f _  ~ c~ -~'r 'P/  ~ -c~ _ _  - _ DaAr, j,Ar, j ,p f d r  a,j, r' D~A/'r 'A) (1.7)  

From (2.10) we have EeD~ t A~/I  2 = i (] '  1S l r')l 2 h(ef - e l )  and this finishes 
the proof. 
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